Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 34(12): 2680-2690, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983183

RESUMO

Cooking oil fumes are an intricate and dynamic mixture containing a variety of poisonous and hazardous substances, and their real-time study remains challenging. Based on tunable synchrotron radiation photoionization mass spectrometry (SR-PIMS), isomeric/isobaric compounds in the gaseous oil fumes from oleic acid thermal oxidation were determined in real time and distinguished by photoionization efficiency (PIE) curve simulation combined with multiple linear regression (MLR) analysis. A series of common carcinogens such as formaldehyde, acetaldehyde, acrolein, and several unreported chemicals including diethyl ether and formylcyclohexane were successfully characterized. Moreover, time-resolved profiles of certain components in gaseous oil fumes were monitored for 55 h. Distinct evolutionary processes were observed, indicating the consumption and formation of parent molecules, intermediates, and final products.

2.
Rapid Commun Mass Spectrom ; 37(21): e9634, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37799030

RESUMO

RATIONALE: Cooking oil fumes contain numerous hazardous and carcinogenic chemicals, posing potential threats to human health. However, the sources of these species remain ambiguous, impeding health risk assessment, pollution control and mechanism research. METHODS: To address this issue, the thermal oxidation of three common unsaturated fatty acids (UFAs), namely oleic, linoleic and linolenic acids, present in vegetable oils was investigated. The volatile and semi-volatile products were comprehensively characterized by online synchrotron radiation photoionization mass spectrometry (SR-PIMS) with two modes, which were validated and complemented using offline gas chromatography (GC)/MS methods. Tunable SR-PIMS combined with photoionization efficiency curve simulation enabled the recognition of isomers/isobars in gaseous fumes. RESULTS: SR-PIMS revealed over 100 products, including aldehydes, alkenes, furans, aromatic hydrocarbons, etc., such as small molecules of formaldehyde, acetaldehyde, acrolein, ethylene and furan, which are not readily detected by conventional GC/MS; and some unreported fractions, e.g. ketene, 4-ethylcyclohexene and cycloundecene(E), were also observed. Furthermore, real-time monitoring of product emissions during the thermal oxidation of the three UFAs via SR-PIMS revealed that linolenic acid may be the major source of acrolein. CONCLUSION: SR-PIMS has been demonstrated as a powerful technique for online investigation of cooking oil fumes. This study achieved comprehensive characterization of volatile and semi-volatile products from the thermal oxidation of oleic, linoleic and linolenic acids, facilitating the traceability of species in cooking fumes and aiding in exploring the thermal reactions of different vegetable oils.


Assuntos
Acroleína , Ácidos Linolênicos , Humanos , Acroleína/análise , Ácidos Graxos/química , Síncrotrons , Óleos de Plantas , Ácidos Graxos Insaturados , Espectrometria de Massas
3.
Chem Sci ; 14(36): 9795-9805, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736626

RESUMO

Synthetic routes to the 10π Hückel aromatic azulene (C10H8) molecule, the simplest polycyclic aromatic hydrocarbon carrying an adjacent five- and seven-membered ring, have been of fundamental importance due to the role of azulene - a structural isomer of naphthalene - as an essential molecular building block of saddle-shaped carbonaceous nanostructures such as curved nanographenes and nanoribbons. Here, we report on the very first gas phase preparation of azulene by probing the gas-phase reaction between two resonantly stabilized radicals, fulvenallenyl and propargyl , in a molecular beam through isomer-resolved vacuum ultraviolet photoionization mass spectrometry. Augmented by electronic structure calculations, the novel Fulvenallenyl Addition Cyclization Aromatization (FACA) reaction mechanism affords a versatile concept for introducing the azulene moiety into polycyclic aromatic systems thus facilitating an understanding of barrierless molecular mass growth processes of saddle-shaped aromatics and eventually carbonaceous nanoparticles (soot, interstellar grains) in our universe.

4.
J Phys Chem Lett ; 13(30): 6875-6882, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35861849

RESUMO

Unravelling the generation of complex organic molecules (COMs) on interstellar nanoparticles (grains) is essential in establishing predictive astrochemical reaction networks and recognizing evolution stages of molecular clouds and star-forming regions. The formation of COMs has been associated with the irradiation of interstellar ices by ultraviolet photons and galactic cosmic rays. Herein, we pioneer the first incorporation of synchrotron vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry (SVUV-PI-ReTOF-MS) in laboratory astrophysics simulation experiments to afford an isomer-selective identification of key COMs (ketene (H2C═CO); acetaldehyde (CH3CHO); vinyl alcohol (H2C═CHOH)) based on photoionization efficiency (PIE) curves of molecules desorbing from exposed carbon monoxide-methane (CO-CH4) ices. Our results demonstrate that the SVUV-PI-ReTOF-MS approach represents a versatile, rapid methodology for a comprehensive identification and explicit understanding of the complex organics produced in space simulation experiments. This methodology is expected to significantly improve the predictive nature of astrochemical models of complex organic molecules formed abiotically in deep space, including biorelated species linked to the origins-of-life topic.


Assuntos
Metano , Síncrotrons , Monóxido de Carbono/química , Espectrometria de Massas , Metano/química
5.
Commun Chem ; 5(1): 153, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36697679

RESUMO

Gallium-modified HZSM-5 zeolites are known to increase aromatic selectivity in methanol conversion. However, there are still disputes about the exact active sites and the aromatic formation mechanisms over Ga-modified zeolites. In this work, in situ synchrotron radiation photoionization mass spectrometry (SR-PIMS) experiments were carried out to study the behaviors of intermediates and products during methanol conversion over Ga-modified HZSM-5. The increased formaldehyde (HCHO) yield over Ga-modified HZSM-5 was found to play a key role in the increase in aromatic yields. More HCHO was deemed to be generated from the direct dehydrogenation of methanol, and Ga2O3 in Ga-modified HZSM-5 was found to be the active phase. The larger increase in aromatic production over Ga-modified HZSM-5 after reduction‒oxidation treatment was found to be the result of redispersed Ga2O3 with smaller size generating a larger amount of HCHO. This study provides some new insights into the internal driving force for promoting the production of aromatics over Ga-modified HZSM-5.

6.
J Hazard Mater ; 420: 126584, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273887

RESUMO

Non-thermal Plasma (NTP) catalysis is considered as one of the most promising technologies to address a wide range of environmental needs, such as volatile organic compounds (VOCs) and NOx removal. To meet the updated environmental emission standard, the NTP catalysis reaction system needs to be better understood and further optimized. In this work, the degradation process of benzene in NTP, which is still regarded as a "black box" process, was explored by synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). For the first time, we observed over 20 representative species by PIMS and identified their structures accurately by photoionization efficiency (PIE) spectra. Phenol, acetylene and acrolein were recognized as the three main products. More intriguingly, concentration profiles demonstrated that a large amount of acrolein and also several higher-order products, which were usually neglected in previous research, were produced during the NTP destruction process. The details of the benzene degradation reaction mechanism, were finally established by the combination of SVUV-PIMS results, thermochemistry and theoretical calculations. This work helps to complete the mechanistic picture of plasma chemistry, which may be helpful on raveling the more complicated NTP catalysis mechanism in the future therefore contributing to design of improved NTP system for environmental applications.


Assuntos
Gases em Plasma , Compostos Orgânicos Voláteis , Benzeno , Espectrometria de Massas , Síncrotrons
7.
Nat Nanotechnol ; 16(10): 1141-1149, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34312515

RESUMO

Atomically dispersed metal catalysts maximize atom efficiency and display unique catalytic properties compared with regular metal nanoparticles. However, achieving high reactivity while preserving high stability at appreciable loadings remains challenging. Here we solve the challenge by synergizing metal-support interactions and spatial confinement, which enables the fabrication of highly loaded atomic nickel (3.1 wt%) along with dense atomic copper grippers (8.1 wt%) on a graphitic carbon nitride support. For the semi-hydrogenation of acetylene in excess ethylene, the fabricated catalyst shows extraordinary catalytic performance in terms of activity, selectivity and stability-far superior to supported atomic nickel alone in the absence of a synergizing effect. Comprehensive characterization and theoretical calculations reveal that the active nickel site confined in two stable hydroxylated copper grippers dynamically changes by breaking the interfacial nickel-support bonds on reactant adsorption and making these bonds on product desorption. Such a dynamic effect confers high catalytic performance, providing an avenue to rationally design efficient, stable and highly loaded, yet atomically dispersed, catalysts.

8.
J Am Soc Mass Spectrom ; 32(6): 1402-1411, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33961425

RESUMO

Online monitoring of the volatile compounds during the tea roasting process is crucial to find the optimum roasting conditions and improve the quality of green tea. In this work, synchrotron radiation photoionization mass spectrometry (SR-PIMS) was utilized to online monitor the evolved gaseous compounds during the tea roasting process. By virtue of "soft" ionization and fast data acquisition characteristics of SR-PIMS, dozens of aroma compounds including alcohols, aldehydes, furans, and nitrogen- and sulfur-containing species were detected and identified in real time. Moreover, 5-hydroxymethylfurfural (5-HMF), the key intermediate of Maillard reactions, was found with high sensitivity. Evolution processes of all the products could be observed via the time- and temperature-resolved profiles in N2 and the air. Dehydration was found to be the first step during roasting. Oxygen in the air was found to accelerate the formation rate of various stable species and intermediates in the course of the thermal treatment of fresh green tea. The formation mechanisms of evolved compounds such as three sulfur-containing compounds, i.e., dimethyl sulfide, hydrogen sulfide, and methanethiol, could be proposed according to the step-by-step formation process. The time-resolved results were demonstrated to be applicable in the evaluation of different roasting processes by statistical analysis. The optimum tea roasting temperature and duration are proposed to be around 200 °C and 1000 s.

9.
Anal Chem ; 93(14): 5718-5726, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33797228

RESUMO

Direct analysis of chemical components in fresh cigarette smoke in real time is a challenging task. In this work, by using a novel continuous cigarette-pushing and smoke-introducing setup combined with synchrotron radiation photoionization mass spectrometry (SR-PIMS), the photoionization mass spectra of fresh gaseous cigarette sidestream smoke (SSS) from the combustion of solid tobacco could be recorded in real time, and the photoionization efficiency (PIE) curves of each mass peak could be obtained for the first time. Hence, lots of well-known chemical components and even isomers could be identified by their discriminated onsets or PIE curve simulation. Moreover, diimine, 2H-azirine, and sulfur monoxide, which have never been reported in cigarette smoke, were observed in cigarette SSS, and even two intermediates, ethenol and propen-2-ol, anticipated to exist were actually observed and distinguished. To increase the qualification accuracy, a new simulation method based on multiple linear regression (MLR) was developed and applied for the PIE curve simulation, where qualification mistakes caused by subjective judgements could be eliminated as far as possible.

10.
J Phys Chem A ; 125(9): 1949-1957, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651613

RESUMO

The pyrolysis of chlorobenzene (C6H5Cl) at 760 Torr was studied in the temperature range of 873-1223 K. The pyrolysis products including intermediates and chlorinated aromatics were detected and quantified via synchrotron radiation photoionization mass spectrometry. Furthermore, the photoionization cross sections of chlorobenzene were experimentally measured. On the basis of the experimental results, the decomposition pathways of chlorobenzene were discussed as well as the generation and consumption pathways of the main products. Benzene is the main product of chlorobenzene pyrolysis. Chlorobiphenyl (C12H9Cl), dichlorobiphenyl (C12H8Cl2), and chlorotriphenylene (C18H11Cl) predominated in trace chlorinated aromatic products. Chlorobenzene decomposed initially to form two radicals [chlorophenyl (·C6H4Cl) and phenyl (·C6H5)] and the important intermediate o-benzyne (o-C6H4). The propagation processes of chlorinated aromatics, including polychlorinated naphthalenes and polychlorinated biphenyls, were mainly triggered by chlorobenzene, chlorophenyl, and benzene via the even-numbered-carbon growth mechanism. Besides, the small-molecule products such as acetylene (C2H2), 1,3,5-hexatriyne (C6H2), and diacetylene (C4H2) were formed via the bond cleavage of o-benzyne (o-C6H4).

11.
Rev Sci Instrum ; 91(9): 093102, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33003807

RESUMO

A high-pressure reactor was designed and coupled to synchrotron radiation photoionization mass spectrometry (SR-PIMS), which realizes the molecular-beam sampling and detection of gaseous products of high-pressure reactions. The reaction pressure can be controlled by varying the size of the pinhole of the pressure-bearing pipe. As tested by the Fischer-Tropsch synthesis (FTS) catalyzed by Co/SiO2 at 230 °C, the reaction pressure of our setup can reach 1.3 MPa with a pinhole size of 50 µm and 0.16 MPa with a pinhole size of 150 µm. The FTS products were successfully online detected by SR-PIMS, and the photoionization efficiency spectra of selected products were acquired for unambiguous identification of the detected signals. Meanwhile, time-resolved SR-PIMS spectra were acquired with a temporal resolution of 10 s. The characterization results demonstrate that the product distribution (C2-C4, C5-C11, and C12+) of FTS depends on the reaction pressure, where a high pressure facilitates the formation of long-chain hydrocarbons. With the advantages of detecting unstable intermediates and distinguishing isomers, this setup will be useful for fundamental studies of high-pressure heterogeneous catalytic reactions.

12.
Angew Chem Int Ed Engl ; 59(12): 4873-4878, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31943630

RESUMO

HCHO has been confirmed as an active intermediate in the methanol-to-hydrocarbon (MTH) reaction, and is critical for interpreting the mechanisms of coke formation. Here, HCHO was detected and quantified during the MTH process over HSAPO-34 and HZSM-5 by in situ synchrotron radiation photoionization mass spectrometry. Compared with conventional methods, excellent time-resolved profiles were obtained to study the formation and fate of HCHO, and other products during the induction, steady-state reaction, and deactivation periods. Similar formation trends of HCHO and methane, and their close correlation in yields suggest that they are derived from disproportionation of methanol at acidic sites. In the presence of Y2 O3 , the amount of HCHO changes, affecting the hydrogen-transfer processes of olefins into aromatics and aromatics into cokes. The yield of HCHO affects the aromatic-based cycle and the formation of ethylene, indicating that ethylene is mainly formed from the aromatic-based cycle.

13.
Rapid Commun Mass Spectrom ; 31(18): 1491-1498, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667680

RESUMO

RATIONALE: The goal of this work is to employ extractive atmospheric pressure photoionization mass spectrometry (EAPPI-MS) to characterize the constituents in traditional Chinese herbal medicine (TCHM) directly without chromatographic separation. METHODS: Sample was placed in 4 mL of methanol/water (v/v, 3:1) in the nebulization cell, and then the ultrasonic nebulizer was switched on. The ultrasonic nebulization system allows the simultaneous sample extraction and introduction of extract aerosols. The extract aerosols were vaporized in a transfer tube. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by high-resolution time-of-flight mass spectrometry (TOF-MS). RESULTS: The major ingredients including alkaloids, flavonoids, amino acids, saccarides, ginsenosides, lignans and terpenoids were readily detected. Compared with electrospray ionization (ESI), EAPPI allowed the ionization of a wider range of compounds, which is desirable for the integral characterization of TCHMs containing numerous constituents. The significant discrepancies for both alkaloids and terpenoids in tripterygium glycoside tablets from two different manufacturers could be simultaneously reflected from EAPPI mass spectra. CONCLUSIONS: Our results demonstrate that EAPPI-MS can be regarded as a supplementary ambient method for the fast and comprehensive analysis of TCHMs, which is important for the quality control and safety assurance of these products.


Assuntos
Medicamentos de Ervas Chinesas/química , Espectrometria de Massas/métodos , Alcaloides/química , Ginsenosídeos/química , Glicosídeos/química , Medicina Tradicional Chinesa , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA